A $\pi^{\frac{1}{2}}$ SINGLETON WITH NO SHARP IN A GENERIC EXTENSION OF L^{*}

BY RENÉ DAVID

ABSTRACT

We may add to the minimal model with all the sharps for reals a c.c.c. generic Δ_3^1 real with no sharp.

In this paper we show that if we assume the consistency of the theory: $ZF + \forall x (x \subset \omega \to x^{\#} \text{ exists})$ there is a model of this theory and a c.c.c. generic extension N of it, in which there is a π_2^1 real singleton a such that each element of N is constructible from a and so that $a^{\#}$ does not exist in N.

We obtain the first model M by considering in some model of $\mathbb{Z}F^{\#}$ (we note $\mathbb{Z}F^{\#}$ the theory: $\mathbb{Z}F + \forall x (x \subset \omega \to x^{\#} \text{ exists})$) the collection $L^{\#}$ constructed by saturating L by the sharp operation on the reals.

Our proof then uses the methods developed in [1], [3], [4] for constructing a π_2^1 singleton with good properties.

Before giving our main result, let us give a precise definition of the collection L^* .

PROPOSITION I-1. Let M be a model of $\mathbb{Z}F^*$. There exist an ordinal ξ and a family $(a_{\alpha}, 0_{\alpha})_{\alpha < \xi}$ unique such that:

- (1) for all α in ξ : $a_{\alpha} \subset \omega$, $0_{\alpha} \subset \omega$. α ;
- (2) for all α in ξ : if $\alpha = \bigcup_{\alpha}$, $0_{\alpha} = \bigcup_{\beta < \alpha} 0_{\beta}$, if $\alpha = \beta + 1$, $0_{\alpha} = 0_{\beta} \cup \{\omega \cdot \beta + n/n \in a_{\beta}^{\#}\}$;
- (3) for all α in ξ : α is countable in $L(0_{\alpha})$ and a_{α} is the first real x, in the canonical order of $L(0_{\alpha})$, such that $L(x) = L(0_{\alpha})$.
 - (4) ξ is not countable in $L(\bigcup_{\alpha<\xi}0_{\alpha})$.

PROOF. Properties (1), (2), (3) define a_{α} and 0_{α} by induction. ξ is the first ordinal α such that α is not countable in $L(0_{\alpha})$.

Received October 26, 1977 and in revised form July 4, 1978

DEFINITION I-2. Let M be a model of ZF^* and $A = \bigcup_{\alpha < \xi} 0_{\alpha}$. The collection L^* is defined by the formula: $x \in L^* \leftrightarrow x \in L(A)$.

Our main theorem is now

THEOREM I. There is a π_2^1 formula $\varphi(x)$, where x is real, such that the following are provable in ZF:

- (1) $V = L^* \rightarrow \neg \exists x \varphi(x)$.
- (2) $\aleph_1 = \aleph_1^{L^*} \rightarrow \exists^{\leq 1} x \varphi(x).$
- (3) If ZF* is consistent, then so is

ZFC + GCH +
$$\aleph_1 = \aleph_1^{L''} + \exists a \ (\varphi(a) \& V = L(a) = L''(a)).$$

REMARKS. (1) This theorem shows that the following result, due to R. Jensen, is in some sense the best possible:

If N is an extension of L[#] which satisfies: $\forall x (x \subset \omega \to x^{\#} \text{ exists}) + \neg 0^{\dagger} + L^{\#} = K$ (where K is the core model of Dodd-Jensen), then L[#] is Σ_3^1 absolute in N.

The model which will prove part (3) of the theorem gives a counterexample: N satisfies $\exists x \ (\varphi(x) \ \& \ x^*$ does not exist) whereas $M = (L^*)^N$ satisfies $\neg \exists x \varphi(x)$.

(2) At the end of this paper we give a sketch of the proof of a theorem which shows that we may add a π_3^1 real singleton generically to $L^{\#}$ and preserve the sharp property for all the reals. The proof is very near that of [2].

I. Some properties of L^*

Proposition I-3. The collection L^* satisfies:

- (1) $\operatorname{ZFC} + \operatorname{GCH} + \exists X \subset \aleph_1, \ V = L(X),$
- (2) $\forall x (x \subset \omega \rightarrow x^* exists) + V = L^*$,
- (3) $\forall x (x \subset \omega \to \exists \alpha < \aleph_1, x \in L(a_\alpha)).$

PROOF. It is clear that the ordinal ξ defined in Proposition I-1 is such that $\xi = \aleph_1^{L^{\#}}$. (1) follows. (2) and (3) follow from the following lemma and the fact that $0_{\alpha} = A \cap \omega \cdot \alpha$ and $L(0_{\alpha}) = L(a_{\alpha})$.

LEMMA I-4. If a and b are reals, a^* exists and b is constructible from a, then b^* exists.

Proposition I-5. In every model of ZF+ $V=L^*$ there exists a Δ_3^1 well-ordering of R.

PROOF. Let $\varphi(x, y)$ be the formula:

$$x, y \subset \omega$$
 and $\exists \alpha < \aleph_1 [x \in L(a_\alpha) \text{ and } \forall \beta < \alpha \ x \not\in L(a_\beta) \text{ and } ((\exists \beta < \alpha \ y \in L(a_\beta)) \text{ or } (y \in L(a_\alpha) \text{ and } y \text{ is before } x \text{ in the canonical well-ordering of } L(a_\alpha)))].$

 φ clearly defines a well-ordering of $R \cap L^{\#}$.

It is easily seen that " $x = a_{\alpha}$ " is a Σ_{2}^{ZF} formula, and so φ is equivalent to a Σ_{4}^{1} formula. We have to remove one quantifier.

Let $\psi(x, y)$ be the formula:

$$\exists \alpha, \beta < \aleph_1 \ (L_{\alpha}(a_{\beta}) \models \mathsf{ZFC}^- \& x, y \in L_{\alpha}(a_{\beta})$$
 $\& L_{\alpha}(a_{\beta}) \models \varphi(x, y).$

 ψ is equivalent to a Σ_3^1 formula. The fact that φ and ψ are equivalent follows from Lemma I-6:

LEMMA I-6. If $L_{\alpha}(a^{**}) \models ZFC^{-}$ then α is inaccessible in L(a) and so $R \cap L(a) \subset L_{\alpha}(a^{**})$.

II. A c.c.c. generic extension of a model of $V = L^{\#}$ which is not closed under the sharp operation

PROPOSITION II-1. Let M be a model of $\mathbb{Z}F + V = L^*$. There is a unique sequence of reals $(r_{\beta})_{\beta < m_1}$ such that:

$$\forall \alpha < \aleph_1 \ \forall \beta(\omega, \alpha \leq \beta < \omega, (\alpha + 1) \rightarrow r_\beta \text{ is the first real in the canonical order of } L(0_\alpha) \text{ which is not in the set } \{r_\gamma \mid \gamma < \beta\}).$$

PROOF. The sequence is defined by induction. Since for each α in \aleph_1 , α is countable in $L(0_{\alpha})$, we only have to see that for all α in \aleph_1 the sequence $(r_{\beta})_{\beta<\alpha\cdot(\alpha+1)}$ is in $L(0_{\alpha})$, but this is also done by induction.

DEFINITION II-2. Let M be a model of $ZF + V = L^{\#}$ and $A = \bigcup_{\alpha < \aleph_1} 0_{\alpha}$. We define the set P_1 of forcing conditions by:

$$s \in P_1 \leftrightarrow s = (s(0), s(1)) \in P_t(\omega) \times P_t(A)$$

$$(\text{where } P_t(X) = \{x \subset X/x \text{ is finite}\}),$$

$$s \leq s' \leftrightarrow s(i) \supset s'(i), i = 0, 1 \& \forall \alpha \in s'(1) \ S(r_\alpha) \cap s(0) \subset s'(0)$$

$$(\text{where } S(x) = \{x \upharpoonright n/n \in \omega\}).$$

Proposition II-3. (1) P_1 satisfies the \aleph_1 chain condition.

(2) If G is a M generic over P_1 and $g = \{n/\exists s \in G, n \in s(0)\}$ then M(G) = M(g) and $\forall \alpha < \aleph_1 \ (\alpha \in A \leftrightarrow S(r_\alpha) \cap g \text{ is finite}).$

Proof. See [1].

Proposition II-4. $\forall \alpha < \aleph_1, \ 0_\alpha \in L(g)$.

PROOF. By induction.

 $\alpha = 0$: trivial.

 $\alpha = \beta + 1$: by induction $0_{\beta} \in L(g)$ but $\forall \gamma < \omega . \alpha \ (\gamma \in 0_{\alpha} \leftrightarrow S(r_{\gamma}) \cap g$ is finite) and $(r_{\gamma})_{\gamma < \omega . \alpha} \in L(0_{\beta})$; so $0_{\alpha} \in L(g)$.

 $\alpha = \bigcup \alpha$: by induction $\forall \beta < \alpha$, $0_{\beta} \in L(g)$. Since $0_{\alpha} = \bigcup_{\beta < \alpha} 0_{\beta}$ we only have to see that the sequence $(0_{\beta})_{\beta < \alpha}$ is an element of L(g); this is because L(g) satisfies: $\forall \beta < \alpha$, 0_{β} exists, and absoluteness of the construction of $(0_{\beta})_{\beta < \alpha}$.

COROLLARY. M(g) satisfies: $V = L(g) = L^*(g)$ and g^* does not exist.

PROPOSITION II-5. There is a Σ_1^{2F} formula $\theta(x, \alpha, y)$ such that if M is a model of $ZF + V = L^*$ and g is a M generic over P_1 then M(g) satisfies:

$$\forall \alpha < \aleph_1, \ \forall x (x = 0_\alpha \leftrightarrow \theta(x, \alpha, g)).$$

PROOF. It is easy to find a $\Sigma_1^{z_F}$ formula $E(x, \alpha, y)$ such that:

$$ZF \vdash \forall y \subset ORD(\forall x, \alpha(E(x, \alpha, y) \to x \subset \omega \& \alpha < \aleph_1^{L(y)}) \&$$

$$\forall x (x \subset \omega \& x \in L(y) \to \exists! \alpha E(x, \alpha, y)) \&$$

$$\forall \alpha < \aleph_1^{L(y)}(\exists! x E(x, \alpha, y) \& x \in L(y)).$$

(E gives a uniform enumeration of the reals in L(y).)

We define θ by:

 $\alpha < \aleph_1$ and $\exists f, g$ functions with domain $\alpha + 1$ for f and $\omega \cdot (\alpha + 1)$ for g such that $x = f(\alpha)$ and

$$\forall \beta \leq \alpha \left(\beta = \bigcup \beta \rightarrow f(\beta) = \bigcup_{\gamma < \beta} f(\gamma) \right)$$

and

$$\forall \beta < \alpha \ \forall \gamma < \omega . (\beta + 1) \exists z \ [z = g(\gamma) \& (\gamma \in f(\beta + 1) \leftrightarrow S(z) \cap y \text{ is finite}) \& \exists \lambda (E(z, \lambda, f(\beta)) \& \forall \mu < \lambda \ \exists \eta < \gamma E(g(\eta), \mu, f(\beta)))].$$

It is clear that θ is a Σ_1^{ZF} formula. In this formula $f(\beta)$ is 0_{β} and $g(\gamma)$ is r_{γ} . θ has the good properties because of Proposition II-3.

COROLLARY II-6. In M(g) the formula " $x \in R \cap L^*$ " is equivalent to a $\Sigma_{\perp}^{2F}(x,g)$ formula.

$$x \in R \cap L^* \leftrightarrow x \subset \omega \& \exists \alpha, \beta < \aleph_1, x \in L_{\alpha}(0_{\beta}).$$

III. Proof of Theorem I

Let M be a model of $\mathbb{Z}F + V = L^{\#}$. Following the construction in [3] we show that there is a sequence $(T_n, f_n, \tau_n)_{n \in \omega}$ such that:

- (1) $\forall n \ T_n$ is a normal tree of length \aleph_1 ;
- (2) $\forall n \geq 1 \ f_n : T_n \rightarrow T_{n-1}$ and

 $\forall x \in T_n |f_n(x)| = |x| + 1 (|\cdot|)$ is the length function in a tree);

for each \aleph_1 -branch β in T_{n-1} , $\{x \in T_n \mid f_n(x) \in \beta\}$ is a normal subtree of length \aleph_1 in T_n ;

(3) $\forall n \in \omega \ \tau_n : T_n \to \omega \ \text{and}$

$$\forall x, y \in T_n(x \leq_{T_n} y \to \tau_n(x) = \tau_n(y) > \tau_{n-1}(f_n(x))).$$

 $\forall y \ \forall m (y \in T_{n-1} \& |y| = 0 \& m \in \omega \& m > \tau_{n-1}(y) \to \exists x \in T_n(|x| = 0 \& \tau_n(x) = m \& f_n(x) > \tau_{n-1} y));$

- (4) if N is an extension of M which preserves \aleph_1 , then there is for each n at most one branch of length \aleph_1 in T_n ;
- (5) let $P_2 = \{p \mid \text{dom } p = n \& \forall i < n \ p(i) \in T_i \& \forall i < n-1 \ p(i) \ge f_{i+1}(p(i+1))\};$

the order on P_2 is

$$p \leq q \leftrightarrow \text{dom } p \supset \text{dom } q \& \forall i \in \text{dom } q \ p(i) \geq_{\tau_i} q(i).$$

Then P_2 satisfies the \aleph_1 chain condition.

PROOF. The construction follows that of [3]. At limit level it is as follows:

Let $h: \mathbb{N}_1 \to \mathbb{N}_1$ be the function defined by:

 $h(\alpha)$ is the first ordinal β such that α is countable in $L(0_{\beta})$.

(We know that $\forall \alpha \ h(\alpha) \leq \alpha$.)

 $T_n \upharpoonright \omega \cdot \alpha + 1$ is constructed by induction on n.

n = 0: Let $\beta = h(\alpha)$ and $\eta_{0,\alpha}$ be the first ordinal η such that:

$$T_0 \upharpoonright \omega . \alpha \in L_n(0_\beta),$$

 $L_{\eta}(0_{\beta}) \models ZFC^{-} \& \alpha$ is countable.

 $T_0 \upharpoonright \omega \cdot \alpha + 1$ is constructed by taking a $L_{\eta_{0,\alpha}}(0_{\beta})$ generic over the same set of forcing conditions as in [3]; this generic is in $L(0_{\beta})$.

n+1: The construction is the same but $\eta_{n+1,\alpha}$ is the first η such that $T_n \upharpoonright \omega \cdot \alpha + 1$, $T_{n+1} \upharpoonright \omega \cdot \alpha \in L_{\eta}(0_{\beta})$ and $L_{\eta}(0_{\beta}) \models ZFC^{-} \& \alpha$ is countable.

To see that this construction is possible we have to show by induction that:

$$\forall n \in \omega \ \forall \alpha < \aleph_1 \ T_n \upharpoonright \omega . \alpha \in L(0_{h(\alpha)}).$$

The proof for n + 1 is the same as that of n = 0. We prove by induction that

$$T_0 \upharpoonright \omega . \alpha \in L(0_{h(\alpha)}).$$

 $\alpha = \gamma + 1$: Let $\beta = h(\gamma) = h(\alpha)$. $T_0 \upharpoonright \omega \cdot \gamma \in L(0_\beta)$ and so $T_0 \upharpoonright \omega \cdot \gamma + 1 \in L(0_\beta)$ but the construction for successor case is trivial so $T_0 \upharpoonright \omega \cdot \alpha \in L(0_\beta)$.

 $\alpha = \bigcup \alpha$: $T_0 \upharpoonright \omega$. $\alpha = \bigcup_{\gamma < \alpha} T_0 \upharpoonright \omega$. γ but $\forall \gamma < \alpha$ $h(\gamma) \leq h(\alpha)$ and $T_0 \upharpoonright \omega$. $\gamma \in L(0_{h(\gamma)})$, the construction being absolute, we have $(T_0 \upharpoonright \omega . \gamma)_{\gamma < \alpha} \in L(0_{h(\alpha)})$ and so $T_0 \upharpoonright \omega$. $\alpha \in L(0_{h(\alpha)})$.

The properties (1), (2), (3), (4) are proved just as in [3].

Let us now show that P_2 satisfies the \aleph_1 chain condition.

We show as in [3] that for each $n \in \omega$ T_n^* is a Souslin tree in M_n . This is done by induction.

Let T be T_{n+1}^* and $B \subset \aleph_1$ be a code for the branch in T_n^* such that M_{n+1} is L(A, B). (Recall that $A = \bigcup_{\alpha < \aleph_1} 0_{\alpha}$.)

Let $C \subset T$ be a maximal antichain. We have to show that C is countable in M_{n+1} . Let X be a countable elementary substructure of $L_{n_2}(A, B)$ such that A, B, C, T are in X. There is a unique isomorphism π

$$X \xrightarrow{\sim} L_{\beta}(A \cap \alpha, B \cap \alpha), \quad \text{where } \alpha = \aleph_1 \cap X = \pi(\aleph_1) < \aleph_1.$$

We may suppose that $h(\alpha) = \alpha$ (since we may suppose that for γ in $\aleph_1 \cap X$, $\aleph_1^{L(0,\gamma)}$ also is in X).

It is then sufficient to prove, as in [3], that

$$L_{\beta}(A\cap\alpha,B\cap\alpha)\subset L_{\eta_{n+1,\alpha}}(0_{h(\alpha)})$$

but: $A \cap \alpha = 0_{\alpha}$ (since $\omega \cdot \alpha = \alpha$); $h(\alpha) = \alpha$; $B \cap \alpha \in L_{\eta_{n+1,\alpha}}(0_{\alpha})$ (since by the construction of T, $T_n \upharpoonright \omega \cdot \alpha + 1$ is in $L_{\eta_{n+1,\alpha}}(0_{\alpha})$); α is not countable in $L_{\beta}(0_{\alpha})$ and so $\beta < \eta_{n+1,\alpha}$. So we are done, and the existence of the sequence (T_n, f_n, τ_n) is proved.

DEFINITION III-1. We define the ordered set of conditions P by:

$$q \in P \leftrightarrow q = (s, p) \& s \in P_1 \& p \in P_2 \& s(0) = \tau(p)$$

$$(\text{where } \tau(p) = \{\tau_i(p(i)) \mid i \in \text{dom } p\}),$$

$$(s, p) \leq (s', p') \leftrightarrow s \leq s' \& p \leq p'.$$

Proposition III-2. P satisfies the \aleph_1 chain condition.

PROOF. We first show that if q = (s, p), q' = (s', p') and $q, q' \in P$ and $\tau(p) = \tau(p')$ then q and q' are compatible if and only if p and p' are compatible. Let $p_1 \leq p$, p'; we may suppose that $\tau(p_1) = \tau(p) \cup \tau(p')$; then $q_1 = (s_1, p_1)$ extends both q and q', where s_1 is defined by: $s_1(0) = s(0) = s'(0)$ and $s_1(1) = s(1) \cup s'(1)$.

Suppose then that $(q_{\alpha})_{\alpha < \aleph_1}$ is an antichain in P. Since for each $\alpha \tau(p_{\alpha})$ is a finite subset of ω we may suppose that there is a finite subset x of ω such that for all α $\tau(p_{\alpha}) = s_{\alpha}(0) = x$; but then for all α , βs_{α} and s_{β} are compatible and so $(p_{\alpha})_{\alpha < \aleph_1}$ is an antichain in P_2 and this is impossible.

PROPOSITION III-3. Let G be a M generic over P and $g = \{n \in \omega \mid \exists q = (s, p) \in G, n \in s(0) = \sigma(p)\}$. Then M(G) = M(g) and M(g) satisfies:

$$\forall \alpha < \aleph_1, \ 0_{\alpha} \in L(g) \& \ \theta(0_{\alpha}, \alpha, g).$$

PROOF. As in Propositions II-3 and II-4.

The following lemma is well known.

LEMMA III-4. Let $\varphi(x)$ be a formula where x is a real. φ is equivalent to a π_2^1 formula if and only if there is a π_2^{2F} formula ψ such that:

$$\forall x (\varphi(x) \leftrightarrow H_{\mathbf{n}_1} \models \psi(x))$$

(where $H_{\mathbf{n}_1}$ is the set of the hereditary countable sets).

It is then enough to find a π_1^{ZF} formula which satisfies the conditions of the theorem.

Let us now modify — just a little — the definition of the sequence $(a_{\alpha}, 0_{\alpha})_{\alpha < \xi}$ in Proposition I-1. We had written: " a_{α} is the first real x such that $L(x) = L(0_{\alpha})$ " but this is a Σ_{2}^{ZF} formula and it is too much.

LEMMA III-5. There is a Σ_1^{ZF} formula $H(x, y, \alpha)$ such that:

$$ZF \vdash \forall y, \alpha (y \subset \alpha \& \alpha < \aleph_1^{L(y)} \to \exists ! x \ H(x, y, \alpha)) \&$$
$$\forall x (H(x, y, \alpha) \to L(x) = L(y) \& x \subset \omega).$$

PROOF. H says: x_0 is the first real in the order of L(y) which codes α and f is an isomorphism from x_0 onto α and $\forall n (n \in x_1 \leftrightarrow f(n) \in y)$ and $x = (x_0, x_1)$.

DEFINITION III-6. We modify Proposition I-1 by: " $\cdots a_{\alpha}$ is the unique real x such that $H(x, 0_{\alpha}, \omega \cdot \alpha)$. \cdots ".

It is clear that it does not modify L^* and the propositions proved for L^* , since we have only used the fact that $L(a_{\alpha}) = L(0_{\alpha})$.

We now give the π_1^{ZF} formula for the theorem. φ will be a formula " $\varphi_1 \& \varphi_2$ ".

DEFINITION. Let $\varphi_1(x)$ be the formula:

$$x \subset \omega \& \forall \alpha < \aleph_1([\forall y, z, t, u(\theta(z, \alpha + 1, x)) \& \theta(y, \alpha, x) \& H(t, y, \omega, \alpha)) \&$$

$$\forall n \in \omega (n \in u \leftrightarrow \omega, \alpha + n \in z) \rightarrow u = t^*] \&$$

$$[\alpha = \bigcup \alpha \rightarrow \forall y (\theta(y, \alpha, x) \rightarrow (\forall z \in y \exists \beta < \alpha \ \forall t (\theta(t, \beta, x) \rightarrow z \in t)) \& \forall \beta < \alpha \ \forall t, z (\theta(t, \beta, x) \& z \in t \rightarrow z \in y)))]).$$

LEMMA III-7. (1) φ_1 is a π_1^{2F} formula.

(2)
$$M(g)$$
 satisfies: $\varphi_1(g)$ & $\forall x (\varphi_1(x) \rightarrow \forall y \ \forall \alpha < \aleph_1(\theta(y, \alpha, x) \rightarrow y = 0_\alpha))$.

PROOF. (1) The formulas $\alpha < \aleph_1$, θ and H are Σ_1^{ZF} , the formula " $u = t^*$ " is π_1^{ZF} .

(2) The proof is done by induction and is clear from the lemmas before.

DEFINITION. Let $\varphi_2(x)$ be the formula: $\forall \alpha < \aleph_1 \ \forall T \ \forall f(T = \prod_{n \in \omega} T'_n \mid \alpha + 1)$ where $T'_n \mid \alpha + 1$ is the tree constructed (in §III) in L(y) with y such that $\theta(y,\alpha,x)$ and $f = (f_n)_{n \in \omega}$ where the f_n are the associated functions $\to \exists p \in T$ $\forall n \in \omega (\mid p_n \mid = \alpha \& p_n \geqq_{T'_n})$ the n-th element of $x \& \forall u (u <_{T'_{n+1}} p_{n+1})$ $\to f_{n+1}(u) \leqq_{T'_n} p_n)$.

LEMMA III-8. (1) φ_2 is a π_1^{2F} formula.

(2) M(g) satisfies: $\varphi_2(g) \& \exists ! x (\varphi_1(x) \& \varphi_2(x)).$

PROOF. (1) The proof is the same as in [3]. It is enough to see that " $T = \prod_{n \in \omega} T'_n \upharpoonright \alpha + 1$ " and " $f = (f_n)_{n \in \omega}$ " are $\sum_{i=1}^{ZF}$ formulas. It is because the construction is done by a Δ_i^{ZF} induction in $L_{\kappa_i}(y)$ with the y such that $\theta(y, \alpha, x)$.

(2) Remark that if $\varphi_1(x)$ is true then the sequence $(T'_n)_{n \in \omega}$ is exactly the good sequence $(T_n)_{n \in \omega}$ (because of Lemma III-7). Now see the proof in [3].

LEMMA III-9. The formula $\varphi(x):\varphi_1(x) \& \varphi_2(x)$ satisfies the properties of Theorem I.

The proof is now complete.

IV. We now give a sketch of the proof of the following theorem which gives a similar property for L^* of the one given in [2] for L.

THEOREM II. There is a π_1^3 formula $\psi(x)$ such that if $\mathbb{Z}F^*$ is consistent then so is: $\mathbb{Z}F^* + \mathbb{G}CH + \mathbb{N}_1 = \mathbb{N}_1^{L^*} + \mathbb{H}_1^L \times \psi(x) + \mathbb{H}_2 \subset \omega$ $(a \notin L^* \otimes \psi(a) \otimes V = L^*(a)).$

PROOF. Let M be a model of $ZF + V = L^*$.

We define in M, as in [2], a family $(P_{\alpha})_{\alpha<\aleph_1}$ of ordered sets of conditions and $P=\bigcup P_{\alpha}$. The only difference with [2] is that $P_{\alpha+1}$ is constructed by forcing with the same set of conditions but over $L(0_{\alpha})$ instead of some L_{γ} ; we may take the generic in $L(0_{\alpha+1})$.

It is easily seen that for all α in \aleph_1 , P_{α} is in $L(0_{\alpha})$.

The following lemmas will establish the theorem. The proofs are the same as in [2]; we only have to put $L(0_{\alpha})$ instead of $L_{\gamma_{\alpha}}$.

LEMMA IV-1. (1) P^n satisfies the \aleph_1 chain condition.

- (2) If a and b are P generic over M and $a \neq b$ then (a, b) is P^2 generic over M.
- (3) If a is P generic over M then a is P_{α} generic over $L(0_{\alpha})$ for all $\alpha < \aleph_1$.

LEMMA IV-2. Let N be an extension of M; the set $A = \{a \subset \omega \mid a \text{ is } P \text{ generic over } L^*\}$ is π_3^1 in N.

PROOF. The formula " $x \in L^{\#}$ " is Σ_2^{ZF} . There is a Σ_2^{ZF} formula which defines a well ordering relation on $L^{\#}$. We conclude with the same argument as in [2].

LEMMA IV-3. Let g be a P generic over M. Then M(g) satisfies ZF*.

PROOF. Let $x \subset \omega$ be in M(g). Since M satisfies $ZF + V = L^{\#}$ there is α in \aleph_1 such that: $x \in L(A \cap \omega. \alpha, g) = L(a_{\alpha}, g)$. g is generic over $L(a_{\alpha})$ (by Lemma IV-1) and M(g) satisfies: $a_{\alpha}^{\#}$ exists (it is $a_{\alpha+1}$); so it also satisfies $(a_{\alpha}, g)^{\#}$ exists; and we conclude by Lemma I-4.

REFERENCES

- 1. L. Harrington, Long projective well orderings, Ann. Math. Logic 12 (1977), 1-24.
- 2. R. B. Jensen, Definable sets of minimal degree, in Mathematical Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), North-Holland, Amsterdam, 1968, pp. 122-128.

- 3. R. B. Jensen and H. Johnsbraten, A new construction of a Δ_2^1 non-constructible subset of ω , Fund. Math. 81 (1974), 279-290.
- 4. R. B. Jensen and R. M. Solovay, Some applications of almost disjoint sets, in Mathematical Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), North-Holland, Amsterdam, 1968, pp. 84-104.
- 5. R. M. Solovay, A non-constructible Δ_3^1 set of integers, Trans. Amer. Math. Soc. 127 (1967), 50-75.

Université Toulouse Le Mirail 109 Rue Vauquelin 31081 Toulouse Cedex, France